Nonexistence of perfect permutation codes under the Kendall $$\tau $$-metric
نویسندگان
چکیده
In the rank modulation scheme for flash memories, permutation codes have been studied. this paper, we study perfect in $$S_n$$ , set of all permutations on n elements, under Kendall $$\tau $$ -metric. We answer one open problem proposed by Buzaglo and Etzion. That is, proving nonexistence -metric, more values n. Specifically, present polynomial representation size a ball -metric some radius r, obtain sufficient conditions codes. Further, prove that there does not exist t-error-correcting code $$t=2,3,4,5,~\text {or}~\frac{5}{8}\left( {\begin{array}{c}n\\ 2\end{array}}\right) < 2t+1\le \left( .
منابع مشابه
Perfect Permutation Codes with the Kendall's $\tau$-Metric
The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall’s τ -metric. We prove that there are no perfect single-error-correcting codes in Sn, where n...
متن کاملExtending LP-Decoding for Permutation Codes from Euclidean to Kendall tau Metric
Invented in the 1960’s, permutation codes have reemerged in recent years as a topic of great interest because of properties making them attractive for certain modern technological applications. In 2011 a decoding method called LP (linear programming) decoding was introduced for a class of permutation codes with a Euclidean distance induced metric. In this paper we comparatively analyze the Eucl...
متن کاملOptimal Permutation Codes and the Kendall's $\tau$-Metric
The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall's τ-metric. We will consider either optimal codes such as perfect codes or concepts related ...
متن کاملPerfect permutation codes with the Kendall's τ-metric
The rank modulation scheme has been proposed for efficient writing and storing data in non-volatile memory storage. Error-correction in the rank modulation scheme is done by considering permutation codes. In this paper we consider codes in the set of all permutations on n elements, Sn, using the Kendall’s τ -metric. We prove that there are no perfect single-error-correcting codes in Sn, where n...
متن کاملOn the Nonexistence of Perfect Codes in the Johnson Scheme
Although it was conjectured by Delsarte in 1973 that no nontrivial perfect codes exist in the Johnson scheme, only very partial results are known. In this paper we considerably reduce the range in which perfect codes in the Johnson scheme can exist; e.g., we show that there are no nontrivial perfect codes in the Johnson graph J(2w qp, w), p prime. We give theorems about the structure of perfect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Designs, Codes and Cryptography
سال: 2021
ISSN: ['0925-1022', '1573-7586']
DOI: https://doi.org/10.1007/s10623-021-00934-z